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Abstract
The effect of a uniform static external magnetic field in the Voigt configuration on electron–ion
quantum plasma oscillations in single-walled carbon nanotubes is discussed using the linearized
quantum hydrodynamic model in conjunction with Maxwell’s equations. Transverse magnetic
waves which propagate parallel to the surface of the nanotubes, in the presence of an external
magnetic field, yield a spectrum containing a quantum magnetosonic branch in addition to the
magnetoplasmon branch.

In 1928, Langmuir [1] investigated the oscillations of a system
composed of a large number of positive ions and free electrons
with zero total charge, and he was the first to use the term
plasma in this way. The motion of the ions in a plasma, owing
to their relatively great mass, may be neglected in comparison
with the motion of the electrons. In fact, it is sufficient for
many purposes to regard the plasma as an electron gas moving
in a positively charged fluid of uniform density, which is called
the background of positive charge.

However, in such systems both the positive ions and
the electrons oscillate under low-frequency disturbances. For
example, Fetter [2] used a simple hydrodynamic model to
study the electrodynamics of the electron–ion plasma in a
periodic array and obtained an acoustic branch in addition to
the optical branch. Wei and Wang [3] studied the dispersion
relation of quantum ion acoustic wave (QIAW) oscillations in
single-walled carbon nanotubes (SWCNTs) with the quantum
hydrodynamic (QHD) model which was developed by Haas
et al [4, 5]. In particular, Shukla [6] considered SWCNTs
as charged dust rods surrounded by electrons and ions and
obtained the dispersion relation of the dust acoustic wave
(DAW) oscillations using the QHD model.

On the other hand, it is well-known that there exist two
types of low-frequency modes in hydromagnetic waves; one is
the magnetosonic wave and other the Alfven wave [7]. Thus,
in the presence of a static magnetic field, we may expect
a new excitation in carbon nanotubes (CNTs), i.e. quantum
magnetosonic wave (QMSW) oscillations. Let us note that the
effects of a static magnetic field on the plasmon oscillations
of an electron gas in CNTs have been investigated by several
authors using various methods [8–16]. Shyu et al studied

the magnetoplasmon of SWCNTs within the tight-binding
model [8]. The low-frequency single-particle and collective
excitations of SWCNTs were studied in the presence of a
magnetic field by Chiu et al [9, 10]. Vedernikov et al
[11] studied the collective oscillations of two-dimensional
(2D) electrons in nanotubes in the presence of a magnetic
field parallel to the tube axis. The energies of neutral and
charged excitons and plasmon frequencies in nanotubes as
functions of the magnetic field were analyzed by Chaplik [12].
Gumbs [13], calculated the dispersion relation of the collective
magnetoplasmon excitations for an electron gas confined to the
surface of a nanotube when a magnetic field is perpendicular
to its axis. In particular, by using the hydrodynamic
model and Maxwell’s equations, Kobayashi [14] studied
the magnetoplasma wave oscillations of a SWCNT in the
Voigt configuration. Other authors have also reported some
interesting results on collective magnetoplasmon excitations in
CNTs [15, 16].

Here we are interested in transverse magnetic waves which
propagate parallel to the surface of a SWCNT and concentrate
on the excitations of the electron–ion system as two fluids
confined to its surface. There is assumed to be a static
magnetic field B0 that is normal to the cylindrical surface
(Voigt configuration).

We consider an infinitely long and infinitesimally thin
SWCNT with a radius a and take the cylindrical polar
coordinate x = (r, φ, z) for an arbitrary point in space. Let
us consider the CNT to consist of electron and ion fluids
superimposed at r = a with charges e and Ze, respectively.
Charge neutrality requires that the equilibrium densities (per
unit area) of electrons n0

e and ions n0
i satisfy n0

i = n0 and
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n0
e = Zn0

i = Zn0 = 4 ×38 nm−2. Assuming that ne (ni) is the
perturbed density (per unit area) of the homogeneous electron
(ion) fluid on the nanotube surface, due to a propagating
plasma wave with frequency ω along the nanotube axis z.

The behavior of the quantum plasma under consideration
may be described by the following two-fluid equations:
equations of linearized continuity

∂ne(x, t)

∂ t
+ Zn0∇‖ · ue(x, t) = 0, (1)

∂ni(x, t)

∂ t
+ n0∇‖ · ui(x, t) = 0, (2)

and equations of linearized momentum,
∂ue(x, t)

∂ t
= − e

me

[
E‖(x, t) + ue(x, t) × B0

]

− α

Zn0
∇‖ne(x, t) + β

Zn0
∇‖

[∇2
‖ ne(x, t)

]
, (3)

∂ui(x, t)

∂ t
= Ze

m i

[
E‖(x, t) + ui(x, t) × B0

]
(4)

where E‖(x, t) = Ez êz + Eφ êφ is the tangential component of
the electromagnetic field, me (m i) is the electron (ion) mass,
ue (ui) is the velocity of the electron (ion) fluid and ∇‖ =
êz(∂/∂z)+ a−1êφ(∂/∂φ) differentiates only tangentially to the
nanotube surface. In the right-hand side of equation (3), the
first term is the force on the electron fluid due to the tangential
component of the electric field and drift, ue × B0, evaluated
at the nanotube surface r = a, and the second term is the
force due to the internal interaction in the electron species, with
α = π Zn0h̄2/m2

e that is the square of the speed of propagation
of density disturbances in a uniform 2D homogeneous Fermi
electron fluid. This term can be considered to be the classical
pressure of the electron fluid, whereas the third term with β =
h̄2/4m2

e comes from the quantum diffraction effect contained
in the h̄-dependent term (sometimes called the Bohm potential)
that represents the quantum pressure.

The electric current density flowing on the surface of the
cylinder is given by

Je(x, t) = −Zen0ue(x, t) = σ̂eE‖(x, t), (5)

Ji(x, t) = Zen0ui(x, t) = σ̂iE‖(x, t), (6)

where σ̂e (σ̂i) is the conductivity tensor of the electron (ion).
We define the Fourier–Bessel (FB) transform Am(q) of an
arbitrary function A(φ, z, t) by

A(φ, z, t) =
+∞∑

m=−∞

∫ +∞

−∞
dq Am(q) exp [i(mφ + qz − ωt)],

(7)
By eliminating the induced density ne(x, t) and ni(x, t) from
equations (1)–(4) and applying equations (5)–(7), we find

σ̂e = in0 Ze2

meω	2
m

×
(

ω2 − m2

a2 (α + βq2
m) m

a q(α + βq2
m) + iωωce

m
a q(α + βq2

m) − iωωce ω2 − q2(α + βq2
m)

)
,

(8)

σ̂i = in0 Z 2e2

m i(ω2 − ω2
ci)

(
ω −iωci

iωci ω

)
, (9)

where ωce = eB0/me (ωci = ZeB0/m i) is the cyclotron
frequency of the electron (ion), 	2

m = ω2 − ω2
ce − αq2

m − βq4
m

and q2
m = q2 − m2/a2.

In the space above and below the 2D electron–ion cylinder,
the transverse electric wave, satisfies the solution

Ezm(r) = E0z Km(κa)Im(κr) (r < a), (10)

and
Ezm(r) = E0z Im(κa)Km(κr) (r > a), (11)

where Im(x) and Km(x) are the modified Bessel functions and
κ2 = q2 − ω2/c2 and c is the speed of light. Due to the
polarization of the electron–ion fluid on the nanotube surface,
the radial component of the electric field is discontinuous at the
cylinder r = a and we have

Erm(a)|r>a − Erm(a)|r<a

= 1

ε0ω

[
q( jez + jiz) + m

a
( jeφ + jiφ)

]
, (12)

where ε0 is the permittivity of free space and the radial
component Erm and the azimuthal component Eφm of the
electric field are given in [17]. For the particular case when the
speed of light can be taken to be infinitely large, i.e. c −→ ∞,
we have

ω4 − ω2

[
(α + βq2

m)q2
m +

(
1 + Z 2m2

e

m2
i

)
ω2

ce

+ e2 Zn0a

ε0me

(
1 + Zme

m i

)
q2

m Im(qa)Km(qa)

]

+ Zme

m i

[
(α + βq2

m)q2
m +

(
1 + Zme

m i

)
ω2

ce

]

× e2 Zn0a

ε0me
q2

m Im(qa)Km(qa)

+ Z 2m2
e

m2
i

ω2
ce

[
ω2

ce + (α + βq2
m)q2

m

] = 0, (13)

which determines the normal electrostatic modes. In the limit
Zme/mi � 1, the roots of equation (13) become

ω2
+(m, q) ≈ ω2

ce + αq2
m + βq4

m

+ e2 Zn0a

ε0me
q2

m Im(qa)Km(qa), (14)

ω2
−(m, q) ≈ Zme

m i

[
ω2

ce + (α + βq2
m)q2

m

]

×
[

1 + ω2
ce + (α + βq2

m)q2
m

e2 Zn0a
ε0me

q2
m Im(qa)Km(qa)

]−1

(15)

representing a high frequency (magnetoplasmon dispersion)
and a low frequency (QMSW dispersion), respectively.

By setting m = 0 and α = β = 0, from equation (14)
we obtain the result in [14] that it is known as the upper
hybrid mode in gas plasma physics [7]. Formally speaking,
the dispersion curves ω+ for the nanotube continue to increase
with increasing value of q for all m. On the other hand,
when one turns off the external magnetic field, equation (15)
describes the QIAW oscillations in the SWCNTs [3]. Let us
note here that the terms with β do not affect in any substantial
way the long-wavelength properties of the dispersion relations,

2
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equations (14) and (15) [18–20]. Thus, in the following
discussion, we may neglect the term β for the long-wavelength
limit. The dispersion of QMSW oscillations, equation (15), has
interesting limits:

(1) In the long-wavelength limit, i.e. qa −→ 0, by using
the well-known expressions of Bessel functions, Im(x) =
am xm , K0(x) = ln(1.123/x) and Km(x) = bm x−m(m �= 0),
where here am = 2−m/�(m + 1) and bm = 2m−1�(m), we
may obtain for m = 0

ω2
−(m = 0, q ≈ 0) ≈ Zme

m i

Ze2n0a

ε0me

∣
∣
∣ln

qa

2

∣
∣
∣ q, (16)

where ( Zme
mi

Ze2n0a
ε0me

| ln qa
2 |)1/2 is the propagating velocity of the

magnetosonic mode and dose not depends on the magnitude of
external magnetic field. For m �= 0, one obtains

ω2
−(m, q = 0) ≈ Zme

m i

[
ω2

ce + α
m2

a2

][

1 + ω2
ce + α m2

a2

e2n0
ε0mea

m
2

]−1

,

(17)
which is quite sensitive to an external magnetic field and the
radius of the tube. It is easy to find that as the values of the
nanotube radius a increases the values of ω− decrease.

(2) In the short-wavelength limit, i.e. qa −→ ∞, we
may use the asymptotic expressions of the Bessel functions
Im(x) = ex/

√
2πx and Km(x) = √

π
2x e−x , so that the

dispersion relation can be written approximately as

ω2
−(q) ≈ Zme

m i

[
α + βq2

]
q2

[

1 + α + βq2

e2n0
ε0me

1
2q

]−1

. (18)

Comparing the long-wavelength and short-wavelength limits,
it can be seen that the internal interaction forces play
an important role in the dispersion relation, in the short-
wavelength limit. Also, it is clear that the external static
magnetic field increases the frequencies only in the long-
wavelength limit.

In the following, let us consider the cold plasma
approximation in the long-wavelength limit [21, 22]. Then
equations (14) and (15) yield

ω2
+(m, q) ≈ ω2

ce + e2 Zn0a

ε0me
q2

m Im(qa)Km(qa), (19)

ω2
−(m, q) ≈ Zme

m i
ω2

ce

[

1 + ω2
ce

e2 Zn0a
ε0me

q2
m Im(qa)Km(qa)

]−1

.

(20)
At this stage it is easy to make sure that, in the presence of a
static magnetic field, when one turns off the internal interaction
in the electron fluid magnetosonic wave (MSW), oscillations
may be found in the CNTs. We expect that one will obtain
similar MSW oscillations in the random phase approximation
(RPA) approach, since the hydrodynamic model gives results
equivalent to the RPA method in the long-wavelength limit.
This long-wavelength agreement between hydrodynamic and
RPA theories is well known in the literature [23].

To see clearly the character of the dispersion relation for
the MSW oscillations, we illustrate in figure 1 the dependence

Figure 1. Dispersion curves ω−/ωs versus the variable qaB , from
equation (20), for a single-walled carbon nanotube with the radius
a = 5aB , where ωs = (Zmeω

2
ce/mi)

1/2 and B0 = 0.1 T.

of the dimensionless frequency ω/ωs on the dimensionless
variable qaB for a nanotube characterized by a = 5aB and
different values of m, where ωs = (Zmeω

2
ce/m i)

1/2 and B0 =
0.1 T. Let us note here that the magnetic field strength is chosen
in a range that is experimentally accessible. However, the
second term of equation (19) overwhelms the first term in the
region of a magnetic field of B = 0.1 T [14]. It can be seen
that for the MSW oscillations, the frequencies becomes fixed
for all m modes when the wavenumber approaches infinity.

In conclusion, we have used the two-fluid quantum
hydrodynamic model in conjunction with Maxwell’s equations
to investigate the QMSW oscillations in SWCNTs. General
expressions have been derived for the dispersion relation of
the electrostatic modes oscillations. In particular, in the cold
plasma approximation, we have discussed the possibility of
MSW oscillations in CNTs.
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